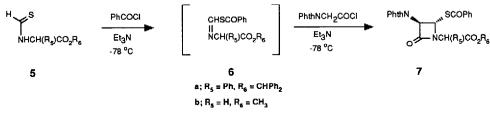

AN EFFICIENT METHOD FOR THE SYNTHESIS OF 4-BENZOYLTHIOAZETIDINONES

Mark P. Wentland,* Philip E. Hansen, Steven R. Schow,¹ and Sol J. Daum

Medicinal Chemistry Department Sterling Research Group Rensselaer, NY 12144

Summary: The kinetically-controlled S-benzoylation of secondary thioformamides in the presence of triethylamine at low temperature provided S-benzoylthioimidates 6. Without isolation, these unstable intermediates were utilized in the ketene-imine cycloaddition reaction with phthalimidoacetyl chloride/triethylamine to give 4-benzoylthioazetidinones 7 in yields up to 95%.


Monocyclic β -lactams and, in particular, their 4-acylthio variants 1 have been extremely valuable intermediates in the preparation of new antibacterial agents. The most notable example is the methodology developed by Woodward and coworkers, where the synthesis of penems 2 has been realized via an intramolecular Wittig olefination [e.g., 1 ($R_1 = C(=PPh_3)CO_2R'$) $\rightarrow 2$].² 4-Acylthioazetidinones have also been used for preparing cephems³ and analogues of the monocyclic β -lactam natural product nocardicin A.⁴

Among the procedures reported for the syntheses of 4-acylthioazetidinones 1, several excellent methods utilize natural penicillin derivatives as starting materials.⁵ Most other 4-acylthioazetidinones have been made by replacement of the acetoxy group in 4-acetoxyazetidin-2-one by salts of thioacids.^{2,6} The remarkably efficient and general method, the ketene-imine cycloaddition, was used to make 4-acetoxyazetidin-2-one and numerous related β -lactams.^{6,7} To our knowledge, however, the ketene-imine cycloaddition reaction has not been used directly to make 4-acylthioazetidinones. This is probably a consequence of the instability and elusive nature of 3, the requisite S-acylthioimidate intermediate.

We envisioned a process whereby acylation of a thioformamide under kinetically-controlled conditions (i.e., low temperature) would discourage the $S \rightarrow N$ acyl migration (i.e., $3 \rightarrow 4$) S-acylthioimidates generally undergo. Subsequent cycloaddition with, for example, the ketene derived from phthalimidoacetyl chloride/ triethylamine would generate the β -lactam. We now wish to report our results showing that 4-benzoylthio-azetidinones 7 can be efficiently prepared using this modification of the ketene-imine cycloaddition reaction.

S-Benzoylation of racemic diphenylmethyl α -[(thioxomethyl)amino]benzeneacetate 5a⁸ was accomplished using benzoyl chloride and triethylamine in CH₂Cl₂ at -78 °C (see Experimental⁹). Subsequent addition of phthalimidoacetyl chloride gave, after work-up and chromatography, a 95% yield of azetidinone 7a.⁹⁻¹²

6619

Using a similar procedure, methyl *trans*-4-(benzoylthio)-3-(1,3-dihydro-1,3-dioxo-2*H*-isoindol-2-yl)-2-oxo-1azetidineacetate¹⁰ (**7b**, mp 119-120 °C, 62%) was made from **5b**.¹³

S-Acylthioimidates 3 are well-documented intermediates in the acylation of thioamides.^{14,15} The products generally observed from these reactions are the thermodynamically more stable N-acylthioamides 4 resulting from an intramolecular $S \rightarrow N$ acyl migration.¹⁴ A low temperature two-phase liquid-solid system has been used to generate examples of 3 which after isolation were thermally rearranged to the more stable species 4.¹⁴ For the examples of 3 that have been isolated and characterized, the R, R₁, and R₄ appendages were either aryl or alkyl groups.¹⁴⁻¹⁶ An interesting facet of Walter's study was the relationship found between the size of the R, R₁, and R₄ groups and the stability (i.e., rate of $S \rightarrow N$ migration), stereochemistry, and conformation of 3.¹⁴

We are aware of only one example of 3 derived from a thioformamide (i.e., $R_4 = H$).¹⁷ Here, thioformamide was acylated with benzoyl chloride in the **absence** of base. The S-benzoyl adduct 3 ($R_1 = R_4 = H$, R = Ph) was isolated and characterized as its HCl salt. The fact that this salt is isolable and that no free base forms of 3 ($R_4 = H$) have been reported is in concert with the proposed mechanism¹⁴ for the intramolecular migration that requires a) the presence of a nitrogen lone pair and b) the ability of 3 to adopt an E-configuration relatively free of steric encumbrances.

To ascertain if the kinetically-controlled conditions used were a necessary component for the success of our reactions, a duplicate of the $5a \rightarrow 7a$ transformation was performed with the only difference being that all manipulations were done at ambient temperature. Compound, 4 [R = Ph, R₁ = CH(Ph)CO₂CHPh₂, R₄ = H] was cleanly secured.¹⁰ This result strongly suggests that at -78 °C the rate of S \rightarrow N acyl migration in **6a** is slow relative to the rate of cycloaddition, but at ambient temperature the rate is such that the migration is essentially complete by the time the other reagents are added.

REFERENCES AND NOTES

- 1. Present address Lederle Laboratories, Pearl River, NY 10965.
- 2. Lang, M.; Prasad, K.; Holick, W.; Gosteli, J.; Ernest, I.; Woodward, R.B. J. Amer. Chem. Soc. 1979, 101, 6296.
- 3. Ernest, I.; Main, A.J.; Woodward, R.B. Helv. Chem. Acta 1981, 64, 1303.
- 4. Foglio, M.; Franceschi, G.; Lombardi, P.; Scarafile, C.; Arcamone, F. J. Chem. Soc., Chem. Commun. 1978, 1101.
- a) Kamiya, T.; Teraji, T.; Saito, Y.; Hashimoto, M.; Nakaguchi, O.; Oku, T. Tetrahedron Lett. 1973, 3001. b) Hatfield, L.D.; Fisher, J.; Jose, F.L.; Cooper, R.D.G. Tetrahedron Lett. 1970, 4897. c) Alpegiana, M.; Bedeschi, A.; Giudici, F.; Perrone, E.; Franceschi, G. J. Amer. Chem. Soc. 1985, 107, 6398.
- 6. Clauss, K.; Grimm, D.; Prossel, G. Justus Liebigs Ann. Chem. 1974, 539.
- 7. Evans, D.A.; Williams, J.M. Tetrahedron Lett. 1988, 29, 5065 and references cited therein.
- 8. Breuer, H.; Treuner, U.D. U.S. Patent 3994889, 1976.
- 9. Experimental Diphenylmethyl trans-4-(benzoylthio)-3-(1,3-dihydro-1,3-dioxo-2H-isolndol-2-yl)-2-oxo-α-phenyl-1-azetidineacetate (7a). Benzoyl chloride (1.55 g, 11 mmol) in 20 mL of CH₂Cl₂ was added over 10 min to a stirred solution (maintained at -78 °C, N₂ atmosphere) of 5a⁸ (3.61 g, 10 mmol), triethylamine (2.23 g, 22 mmol), and 50 mL of CH₂Cl₂. After stirring 15 min at -78 °C phthalimidoacetyl chloride (2.46 g, 0.011 mol) in 30 mL of CH₂Cl₂ was added over 15 min. The solution was stirred at -78 °C for an additional 3 h and allowed to warm to ambient temperature and left standing for 24 h. Following an aqueous NaHCO₃ wash, drying (MgSO₄) and concentration under reduced pressure, the crude product was chromatographed on a Waters Prep 500 HPLC (Prep PAK-500/silica) using 2:1/hexane:ethyl acetate as eluent to provide 6.20 g (95%) of 7a¹⁰⁻¹² (foam). Anal. Calcd for C₃0H₂8N₂O₆S: C, 71.77; H, 4.32; N, 4.29. Found: C, 72.16; H, 4.32; N, 4.00. Scale-up of this reaction also gave excellent results. For example, on a 50 mmol (of 5a) scale, a yield of 89% was realized.
- 10. ¹H-NMR, IR, and mass spectra were consistent with the assigned structures of all new compounds. Carbon, hydrogen, and nitrogen elemental analyses were also obtained and were within ±0.4% of the theoretical values. We acknowledge the assistance of our Analytical Chemistry Department in obtaining these spectral data.
- 11. This represents a mixture (3:2 by 1 H-NMR integration) of diastereometrs epimeric about the α -carbon of the acetate side chain.
- 12. The trans stereochemistry was assigned on the basis of a) a coupling constant of J = 2.5 Hz between H-3, H-4 and b) similar results observed in the cycloaddition with alkylthioimidates: Kamiya, T.; Hashimoto, M.; Nakaguchi, O.; Oku, T. Tetrahedron 1979, 35, 323.
- 13. Lim, B.B., Hosmane, R.S. J. Org. Chem. 1985, 50, 5111.
- 14. Walter, W.; Saha, C.R. Phosphorus and Sulfur 1985, 25, 63.
- a). Walter, W.; Voss, J. Chemistry of the Amide Group; Zablicky, J., Ed.; Interscience: London, 1970; pp. 445-448. b) Bauer, W.; Kuhlein, K. Methoden der Organischen Chemie; Falbe, J., Ed.; Verlag: Stuttgart, 1985; Vol. E5, pp. 1266-1268.
- 16. Tsuge, O.; Kanemasa, S.; Yamada, T.; Matsuda, K. J. Org. Chem. 1987, 52, 2523.
- 17. Bredereck, H.; Gompper, R.; Seiz, H. Chem. Ber. 1957, 90, 1837.

(Received in USA 7 August 1989)